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Summary 

T h i s  report  i s  concerned with the following aspects 'of sub ELF emissions 

and related effects :  - 
Par t  1: EXPERIMENTAL OBSERVATION OF A NEW TYPE OF SUB ELF EMISSION 

c 

From a study of frequency-time character is t ics  of signals received a t  four 

widely separated low-latitude stations, we have ascertained the existence of 

a low-level sub ELF emission which i s  almost always present during the night- 

time hours. 

Pa r t  2: ADDITIONAL EVIIENCE FOR THE ATTENUATION OF HYDROMAGNETIC 

EMISSIONS I N  THE IONOSPHERE 

A brief analysis  of amplitude-time hm-emission data from Palo,Alto and Kauai 

has demonstrated a pronounced ionospheric attenuation e f f e c t  which ve r i f i e s  

previous work a t  Lockheed on attenuation of hydromagnetic waves i n  the 

ionosphere. 

Par t  3 :  AN APPROXIMATE UPPER IJMIT TO RING CURRENT IENSITIES 

The theoret ical  m a x i m u m  trapped par t ic le  loading of f i e l d  l i n e s  i n  the 

magnetosphere i s  derived. The result i s  u t i l i zed  i n  Par t  4. 
Par t  4: CYCLOTRON EXCITATION OF HYDROMAGNETIC EMISSIONS 

A new model i s  presented which explains a number of observed hm-emission 

charac te r i s t ics  . . 
We believe tha t  the r e su l t s  presented on the following pages more than 

f u l f i l l  the project  objectives and may i n  f a c t  contribute s ignif icant ly  t o  

the understanding + of the phenomena of i n t e re s t .  
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Pa r t  1 

ElPEEMERWL OBSERVA!TION OF A NEW TYPE OF SUB ELF ENISSTON 

Lee Tepley and K. D. Amundsen 

Research Laboratories 

Lockheed Missiles and Space Co- 

Palo Alto, California 

The location of t he  four Lockheed Pac i f ic  Ocean s ta t ions i s  shown i n  

Fig. 1. 

of properties of hydromagnetic emissions observed simultaneously a t  the  

four  stations.  

low l e v e l  sub EGF emission which seems t o  almost always be present during 

nighttime hours. In Figs, 2 and 3 the low l eve l  emission is presented i n  

sonagrams from magnetic tape data recorded a t  the  four  Pacif ic  s ta t ions  on 

two consecutive nights ( A u g u s t  2 and 3, 1963). 
by bands of sub ELF energy at  all locations except t h e  near equatorial  Canton 

Island station. 

pEtrticular i n t e re s t  that the  mid-band frequencies and the  number of bands 

occurring simultaneously may vary great ly  at  the  d i f fe ren t  stations.  

of equal i n t e re s t  tha t  t h e  mid-band frequencies of a l l  bands a t  all s ta t ions  

increase slowly but s teadi ly  during the night and then decrease reht ively 
abruptly near l oca l  sunrise j u s t  before the  signals fade out, 

R e s u l t s  are presented elsewhere (Tepley et  al., 19633 Tepley, 1964) 

We are concerned here with the properties of a new type of 

The sonagrams are characterized 

Thus a pronounced la t i tude  e f fec t  is indicated. It is  of 

It i s  

It i s  perhaps premature t o  conclude that the  low level s ignal  characteris- 

t i c s  shown i n  Figs. 2 and 3 are character is t ic  of most n i g h t t i m e  hours, 

There is however, some indication that  t h i s  i s  the case. 

sonagrams from Tongatapu records were obtained f o r  2l.6 consecutive hours 

from Aug. 1 through Aug. 9, 1963. 
l o w  l e v e l  s ignal  character is t ics  presented i n  Figs. 2 and 3 were observed 

For example 

8 

During this 9 day period t h e  same general 

- 

1 
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every night. 

by a howling sound on time compressed magnetic tape. 

be present during most nighttime hours on records from a l l  s ta t ions  except 

Canton Island. 

I n  addition, the low level  signals a r e  characterized aural ly  

The "howl" seems t o  

The sonagrams of Figs. 1 and 2 are perhaps less striking than those 

presented i n  Fig. 1 of Par t  4 and elsewhere (Tepley, 1961; Tepley, 19623 

Tepley, 19643 Tepley e t  al,, 1964; Tepley and Wentworth, 1962) but  t h i s  i s  

primarily because they display a signal which i s  only marginally above the 

background noise level. 

s ignal  was an unexpected and surprising result .  

. 

The discovery of the existence of this low l e v e l  

The observation of the  low l eve l  s igna l  indicates that the  background 

s ignal  l e v e l  near 1 cps i s  not p r i m r i l y  due t o  l ightning as was previously 

thought t o  be the case (Lokken e t  al.,  1963). 
sooner primarily because of its low amplitude (usually less than lmilligamms 

- t he  signal is rarely observed on our helicorder chart records). 

higher amplitude f ine  structured hm emissions have previously been of greater  

in te res t .  

cycle may lead t o  improved propagation of these signals through the  ionosphere. 

The sigaal was not discovered 

Also t he  

It i s  a l so  possible t h a t  the approach of the  minimum of t he  sunspot 

The question immediately a r i s e s  as t o  whether o r  not the  low-level 

signals are of the same or igin as f ine structured hydromagnetic emissions. 

W e  cannot presently answer t h i s  question but the  following comments seem t o  

be i n  order! 

1. The signals do not exhibit a rising-frequency fine-structure 

character is t ic  of most hm emissions. However, a t  t i m e s  it appears 

t h a t  a continuous t rans i t ion  occurs i n  which t h e  low-level signals 

a r e  converted t o  fine-structured h m  emissions. 

t h e  super-position of fine-structured hm emissions on the  low-level 

signals m y  be en t i re ly  mincidental. 

The nocturnal appearance of the low-level signals leads t o  the  

suggestion t h a t  the  signals a r e  generated above the  ionospher6 

and are propagated hydromgnetically through the  ionosphere 

suffering severe ionospheric attenuation during the  daylight 

hours (Tepley, 1962; Wentworth, 1963, 1964). 

Alternatively, 

2. 

If t h i s  suggestion 

2 
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is cmrect ,  the  signals may be classif ied as a type of hydromagnetic 

emission i r respect ive of the absence of f i n e  structure,  

I n  v i e w  of the loca l  variation i n  the mid-band center frequency 

and the  increase i n  t h i s  frequency a t  a l l  statims throughout t h e  

course of the night, it may be suggested that t h e  low level signals 
originate in t h e  ionosphere, i n  which case the  s ignal  would not 

be c lass i f ied  as a hydromagnetic emission. 

3. 
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P a r t  2 

ADDITIONAL EWIDENCE FOR THE ATTENUATION 

OF HYDROMAGNE2IC EMISSIONS I N  THE IONOSPHERE 

R. C. Wentworth and Lee Tepley 

Research Laboratories 

Lockheed Missiles and Space Company 

Palo Alto., California 

It has been recognized f o r  some t i m e  t h a t  hydromagnetic waves i n  the  

frequency in t e rva l  around 1 cps can be severely attenuated i n  the  daytime 

ionosphere (Dessler, 1959; Francis and Karplus, 1960; Karplus e t  al,  , 1962). 
Tepley (1962) first demonstrated that t h i s  prsperty could be used t o  explain 

the d iurna l  var ia t ion i n  amplitudes of hm emissions observed a t  middle 

la t i tudes.  

hydromagnetic-wave attenuation character is t ic  could be applied t o  explain 

More recently Wentworth (1963, 1964) demonstrated t h a t  the s a m e  

the difference i n  diurnal variation of emissions observed a t  middle and 

high Latitudes. I n  t h i s  note additional evidence i s  presented which demon- 

strates the  influence of ionospheric attenuation on signals observed s i m u l -  

taneously a t  middle and low l a t i t ude  stations. 

Recently, a preliminary analysis was carried out sn  amplitudes of h m  

emissions observed simultaneously at Palo Alto, California, and Kauai, H a w a i i ,  

from September 15, 1963 through November 3, 1963. The resul t ing amplitude 

r a t i o s  of Palo Alto t o  K a u a i  were plotted as a function of universal  time, 

and a s t r ik ing  pa t te rn  emerged which lends strong addi t ional  support t o  

the  hypothesis of heavy daytime hydromagnetic-wave attenuation i n  the  iono- 

sphere a t  middle and low la t i tudes.  

The results of t h i s  analysis a r e  plotted i n  Fig. 1. It an be seen 

t h a t  t he  amplitude r a t i o  i s  exceptionally high during -‘;he t i m e  D f  day which 

. 

ll 
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is after sunset a t  Palo Alto, but before sunset a t  Kauai. 

of the  scale, those events which occurred a f t e r  sunrise a t  Palo Alto and 

before sunrise a t  Kauai exhibit  amplitude r a t i o s  of somewhat l e s s  than one. 

A t  the  other end 

It appears t ha t  two main factors  are influencing the  r e l a t ive  amplitudes 

of emissions observed simultaneously a t  Palo Alto and Kauai. 

at tenuation i s  occurring above Kauai before l o c a l  sunset r e l a t ive  t o  the p s t  
sunset conditions above Palo Alto a t  the same time. Likewise, heavy attenua- 

t i o n  is occurring above Palo Alto a f t e r  l o c a l  sunrise relative t o  pre-sunrise 
conditions above muai a t  the same universal t i m e .  

lat i tude e f f ec t  exists with amplitudes a t  Palo Alto being roughly six t i m e s  

those a t  Kaua i  f o r  comparable ionospheric conditions. 

F i r s t ,  heavy . 

Second, a pronounced 

The Palo Alto and Kauai s ta t ions were s e t  up and operated under contracts 

. AI? 19(604)-5906 and AF 19(628)-462 f o r  the A i r  Force Cambridge Research 

Laboratories, Office of Aerospace Research. 

analyzed under contract  NAS 5-3656 f o r  the National Aeronautics and Space 

Administration. We wish to acknowledge the following individuals f o r  t he i r  

work i n  set t ing up and operating the stations:  K.  D. Amundsen, D. R.  Hillendahl, , 

K .  G. Lambert  and H. V. Prentiss.  

f o r  his assistance i n  data reduction. 

The data presented here was 

We also wish to  acknowledge K .  D. Amundsen 
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time. 
sunrise a t  Palo Alto, with-an average of about 6 around midnight. 

(Palo Alto)/(Kauai) amplitude r a t i o s  as a function of universal  
The r a t i o s  vary from 30 before sunset a t  Kauai t o  about 0.8 after 
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Part  3 
AN APPXOXWATE UPPER LIMIT 
To IENG CrORREIJT DENSI!CIES 

R. C. Wentworth 

Research Laboratory 

Lockheed Missiles and Space C c m p n y  

Palo A l t o ,  California 

It was f i rs t  pointed out by Beard (1962) that the  maximum perpendicular 

energy density of trapped r ing  current par t ic les  which could be con-ned 

by the  earthf s magnetic f i e l d  'in the magnetosphere was approximately one 

quarter of the unperturbed magnetic field energy density. 

of t h e  present note t o  re-derive t h i s  r e su l t  i n  order t o  stress a pa ra l l e l  

development t o  Beard's ana,lysis, m e l y  that the  minimum perturbation field 

resu l t ing  fmm trapped r ing current par t ic les  is one-half of the unperturbed 

value. 

It is  t h e  purpose 

Beard (1962) showed t h a t  the perturbation f i e l d  due t o  the trapped 

r i n g  current pa r t i c l e s  i s  predominantly due t o  the  diamagnetic e f f ec t  of 

t he  trapped par t ic les  i n  t h e  vicini ty  of the t e s t  point. 

of a single spiral ing par t ic le ,  defined as t he  current generated by i t s  
gyration times the  area enclosed, i s  given by (see e.g. Ape1 e t  al., 1963) 

The magnetic moment 

and the  magnetic moment per u n i t  volume i n  the v ic in i ty  of the test point is 

M = NoP = NoE A /B 
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It is  useful t o  note t h a t  t h e  magnetic f i e l d  i n  the  i n t e r i o r  of a 
uniformly magnetized sphere of mgnetization M per u n i t  vdume i s  

w h i l e  the magnetic f i e l d  i n  the in t e r io r  of a uniformly magnetized semi- 

inf ini te  cylinder of magnetization M per unit volume i s  

. 

A B c  

Therefore, l e t  us take as a n  approximation t o  t h e  magnetic f i e l d  pro- 

duced by the trapped r ing  current par t ic les  i n  t h e  vicinity of the test 

point, 

8 TI ' o E ~  A % = (8 n/S)M = 5 - B 

where 

The magnetic f i e l d  a t  t h e  tes t  point i s  then given by 

where Bo 

a t  the tes t  point. 

i s  the  unperturbed field i n  the  absence of ring current particles 

Solving f o r  B, we have 

where 

16 
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Equation (2) is equivalent t o  the final r e su l t  of Beard (1962). 

Results. Equation (2) implies t ha t  the m i n i m u m  perturbation f i e l d  

which G= be produced by trapped ring current pa r t i c l e s  i s  given by 

Bmin = BJ2 (3)  

is the  unperturbed f i e l d  a t  the t e s t  point i n  the absence of 
BO 

where 

trapped par t ic les .  

which can be sustained i n  the vicini ty  of the t e s t  point i s  given by 

In  addition, the  maximum trapped r ing  current density 

where 

As mentioned previously, this resu l t  was obtained by Beard (1962) who 

assumed throughout t h a t  5 was equal t o  1. We note that i n  this case the  

max imum trapped pa r t i c l e  energy density, 

perturbation f i e l d  energy density, B2/&1. 
N3E, , is equal t o  the  minimum 

C r i t i c a l  Discussion. We conclude t h a t  the m i n i m u m  perturbation f i e l d  

i s  one-half of the unperturbed f ie ld ,  and the  maxi- trapped p a r t i c l e  

energy density i s  one-fourth of the  unperturbed magnetic f i e l d  energy 

density. 

trapped par t ic le  energy density and the perturbed magnetic f i e l d  energy 

density. 

them and t he  excess par t ic les  w i l l  be blown out t he  sides of t he  flux tube 

unt2l  conditions (3) and (4) a re  everywhere fu l f i l l ed .  

A(;XNOWLEDGRvfENTS 

A s  mentioned abme, these conditions lead t o  equality between the 
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P a r t  4 
CYCLOTFON EXCITATION OF HYDROMAGNETIC EMISSIONS 

Lee Tepley and R. C: Wentworth 

Research Laboratories 

bckheed Missiles and Space Company 

Palo Alto, California 

ABSTRACT 

A new model fo r  the production of hydromagnetic emissions 
i s  presented. Hydromagnetic emissions are typical ly  character- 
ized by two frequencies; the emission frequency on the order of 
0.5-3.0 cps, and the repet i t ion frequency of the fine-structured 
elements on the order of 0.2-1.0 cycles per minute (periods of 
1 t o  5 minutes). The model explains these two  character is t ic  
frequencies as being determined by two natural  parameters of 
the motion of proton streams i n  the magnetosphere. The emission 
frequency i s  the anomalously Ibppler shif ted proton cyclotron 
frequency i n  -the v ic in i ty  o f  the equatorial  plane, and the 
period of the fine-structured elements, observed experimentally 
t o  be received al ternately i n  the two  hemispheres, i s  deter- 
mined by the bounce period of the proton stream as it mirrors 
successively above the northern and southern hemispheres. The 
model explains the rising-frequency emission f ine s t ructure  i n  
te rns  of velocity spread i n  the proton stream, and predicts  
the experimentally observed l a t i t ude  dependence of hm emission 
frequency. 
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I INTRODUCTION 

Recent experimental observations (Tepley, 1964; Tepley e t  al, 1964) have 

conclusively demonstrated tha t  the regularly spaced fine- structured elements 

which const i tute  most hm emissions (Figure 1) are  observed simultaneously at  

s ta t ions  i n  the same hemisphere, but  are  a l te rna te ly  spaced (180') out of 

phase) i n  emissions observed simultaneously on opposite sides of the equator: 

Hence, hm-emission energy i s  received periodically and a l te rna te ly  i n  the 

northern and southern hemispheres. This r e su l t  i s  suggestive of a slow 

energy bounce between hemispheres (bounce times a re  typ ica l ly  on the order of 

1 t o  4 minutes). 

terms of a model involving geomagnetically trapped proton bunches of solar- 

wind energies bouncing between tiemispheres and generating hm emissions i n  the 

lower exosphere by means of a hydromagnetic resonance effect .  

theore t ica l ly  predicted l a t i t ude  dependence of the hm-emission frequency, 

associated with the hydromagnetic resonance, i s  i n  disagreement with 

. 

Jacobs and Watanabe (1963) have interpreted t h i s  r e su l t  i n  

However, the  

* experimental observations (Tepley, 1964; Tepley e t  al, 1964; Wentworth, 

l964a,b). Hence t h e i r  model , is inadequate. 

More recently Jacobs and Watanabe (1964) have presented an al ternat ive 

model i n  which hm emissions a re  generated by hydromagnetic wave packets 

bouncing between hemispheres. 

and are guided by the  geomagnetic f ie ld .  

quant i ta t ively considered the important but probably very d i f f i c u l t  problem 

of the extent t o  which the waves are  guided. Unless guidance i s  almost 

perfect ,  an exponential decay should be observed i n  the i n t e n s i t i e s  of 

successive fine-structured elements which represent successive a r r iva l s  of 

the hydromagnetic wave packets. This i s  usually not observed experimentally. 

Instead the emission band generally increases slowly i n  in t ens i ty  ( typ ica l ly  

over a 10-13 minute period) and then decreases i n  in tens i ty  a t  about the same 

. 

The wave packets propagate i n  the Alfven mode 

However, the authors have not 

rate.  It thus appears t ha t  energy i s  being continuously supplied t o  the  wave 

packet, so t h a t  extremely close guidance of the packet by the magnetic f i e l d  

i s  not necessarily required i n  order t o  sustain the packet f o r  a large 

number of bounces. 
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I n  t h i s  paper we again consider concepts similar t o  those u t i l i zed  by 

Jacobs and Watanabe- The concept of bouncing proton bunches, however, while 

easy t o  visualize,  seems d i f f i c u l t  t o  j u s t i fy  on physical grounds. 

perhaps more r e a l i s t i c  to consider the protons as moving i n  streams of un- 

specified dimensions along geomagnetic f i e l d  l ines .  We consider proton 

streams and hydromagnetic-wave packets (propagating i n  the AJfven mode) 

characterized by approximately the same bounce t i m e  between opposite hemi- 

spheres. W e  also specify tha t  the streams and wave packets move i n  the  same 

direct ion and tha t  they cross the equatorial plane at about the same t i m e .  

We suggest t ha t  the wave packets a re  i n i t i a l l y  generated by the proton streams 

i n  the v i c in i ty  of the equatorial  plane. Thus i n  each successive crossing of 

the equatorial  plane, the stream imparts additional energy t o  the wave packet 

It i s  

t o  compensate f o r  losses  due t o  imperfect guidance by the magnetic f ie ld .  I n  

t h i s  way the energy of the packet builds up u n t i l  the stream and packet drift  

out of phase. 

The proposed mechanism might at  f irst  appear t o  resemble the t ravel ing 

wave amplification mechanism proposed f o r  the generation of VLF emissions 

( G a l l e t ,  19%; Gallet and H e l l i w e l l ,  1959). 
ac tua l ly  u t i l i z e  t ravel ing wave amplification i n  the  usual sense wherein the 

in te rac t ion  between pa r t i c l e s  and waves occurs when both move at about the 

same velocity. Instead the energy transfer occurs when the stream velocity 

exceeds the wave veloci ty  by a significant factor.  I n  t h i s  preliminary paper 

we do not actual ly  consider the particle-wave interact ion but only the radia- 

t i o n  of energy by protons i n  the  stream i n  appropriate time-phase t o  reinforce 

the wave packet generated by the stream at an earlier time. 

However the  model does not 

There i s  some evidence tha t  a significant percentage of alpha pa r t i c l e s  

i s  present i n  the  solar wind. 

might conceivably be trapped i n  the geomagnetic f i e l d  and would also radiate  

energy i n  the form of hydromagnetic waves, but at  lower frequencies than 

those calculated i n  t h i s  paper f o r  radiation from proton streams; we a re  

concerned here, however, only with proton radiation. 

Thus alpha pa r t i c l e s  of solar  wind energies 

I n  concluding our introductory remarks w e  comment tha t ,  i n  contrast t o  

the first proton bunch model of Jacobs and Watanabe, the present model pre- 
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d i c t s  the observed l a t i t ude  dependence of hm-emission frequency. 

a lso leads t o  an al ternat ive explanation of the rising-frequency emission 

f ine structure.  

extremely close guidance of the hydromagnetic wave packets, a mechanism f o r  

close guidance i s  inherent i n  those calculations which u t i l i z e  loaded magnetic 

f i e l d  l i n e s  (as discussed i n  Part  3 of t h i s  report)  and a plasma density 

The model 

We a l s o  note tha t  although the present model does not require 

knee'' i n  the magnetosphere. :I 

II- GENERAZ; THEORCTICAL CONSIDERATIONS 
We postulate t h a t  the hydromagnetic wave packet i s  propagated along a 

geomagnetic f i e l d  l i n e  i n  the Alfven mode and a large f rac t ion  of the wave 

energy i s  ref lected near the end of the l ine .  

between hemispheres. 

other  hydromagnetic wave mode ( the  so-called magneto-sonic wave) i s  not 

s ignif icant ly  guided by the  geomagnetic f ie ld ,  and recent experimental 

observations (Tepley, 1964; Tepley e t  al, 1964) demonstrate t h a t  a signifi- 

cant amount of guidance occurs. However, we do not require almost perfect  

guidance nor do w e  require almost complete re f lec t ion  near the  end of the 

f i e l d  l i n e ,  since the energy of the wave packet i s  reinforced on every bounce 

near the  equatorial  plane by cyclotron radiat ion f r o m  proton streams which 

cross the  equatorial  plane coincidentally with the wave packet. 

Thus the wave packet "bounces" 

W e  consider Alfven mode propagation on ly  since the 

A. The anomalous lbppler effect. An association between the hm- 
emission frequency and the proton cyclotron frequency was suggested by one 

of the authors i n  e a r l i e r  papers (Tepley, 1961a,b). 

j ec t  t o  the apparent d i f f i c u l t i e s  that  the Alfven wave does not propagate at  

( o r  above) the proton cyclotron frequency, and t h a t  strong cyclotron 

(co l l i s ion less )  absorption and thermal absorption occur when the wave fre-  

quency i s  near the proton cyclotron frequency. These d i f f i cu l t i e s  are 

resolved when the radiating stream has a substant ia l  veloci ty  component along 

the magnetic f i e ld ,  i n  which case the frequency of the radiated wave i s  

mppler  shif ted away from the proton cyclotron frequency. 

consider cyclotron radiat ion from proton streams moving "fas te r  than l i gh t "  - 
t h a t  is, moving with a velocity along the  magnetic f i e l d  which exceeds the 

The suggestion i s  sub- 

In  t h i s  paper we 

23 

LOCKHEED MISSILES & SPACE COMPANY 



phase velocity of the hydromagnetic wave i n  the magnetosphere. In  t h i s  case 

t h e  Doppler sh i f t  i s  "anomalous", t h a t  is, the  frequency of radiation i n  the 

forward direction i s  shif ted downward. 

e f f e c t  may be writ ten as follows: 

The equation fo r  the anomalous Doppler 

- 0) a ' = (-*n.cos V e - 1) 
a. C 

where (u i s  the proton cyclotron frequency, (I) is  the Doppler shif ted hydro- 

magnetic wave frequency, v!, 

magnetic f ie ld ,  V 

gation vector of the wave and the magnetic f i e ld ,  and n = V /V 

of refract ion of the medium. 

wave propagating i n  the Alfven mode.) 

C 

i s  the  compohent of proton veloci ty  along the 

i s  the Alfven velocity, 0 i s  the  angle between the propa- 

i s  the index 

(V@ i s  the phase veloci ty  of the hydromagnetic 

a 

a @  

The possible importance of anomalously Doppler sh i f ted  cyclotron radia- 

t i o n  f o r  the production of geomagnetic micropulsations was first pointed out 

i n  an excellent paper by M. A. Ginzburg (1962). The model presented i n  t h i s  

paper i s  essent ia l ly  an application of the basic  concepts presented by 

Ginzburg . 

. 

B. Determination of the  radiated frequency. For propagation of an 

Alfven wave i n  a cold plasma, t h e  index of refract ion of the plasma i s  

c 

where x = (u/u i s  the  dimensionless hydromagnetic-wave frequency. 

equation i s  va l id  f o r  all values of 8 except those very near 90'. 
The above 

C 

By combining Equations (1) and ( 2 )  we obtain the following expression: 

2 
2 

2 2 2  
( 3) 

2(1  - x ) (e) V = ( 1 + $ ) .  2 

1 + cos e +Jsinlce + 4x cos e 

Thus fo r  any given value of v,, /Va and 8 the  radiated frequency i s  uniquely 

determined. 

quency of the radiation f r o m  a single par t ic le ,  since i f  we were t o  consider 

Equation ( 3 )  i s  s t r i c t l y  va l id  fo r  determination of the f re -  
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a stream of radiating par t ic les ,  the expression for  the index of refract ion 

of the plasma would be modified. 

I n  Figure 2, a p lo t  i s  presented of v,, /V versus €3 f o r  four values a 
of the parameter x. 

O o s t  horizontal l i n e s  shows t h a t  almost the same frequency i s  radiated i n  

any forward direction ( a  pronounced angular dependence of radiated frequency 

The f ac t  t h a t  the  se r ies  of curves a re  i n  the  form of 

I 

i s  obtained when the same procedure i s  carried out f o r  the magneto-sonic 

wave). Hence, t o  a close .approximation, the  radiated frequency resul t ing 

from the anomalous Coppler. s h i f t  of the Alfven wave at  any angle 8 i s  the 

same as t h a t  observed a t  8 = 0 and given by 

- -  - (1+L)  JG 
X a v (4) 

A curve for  the above equation i s  presented i n  Figure 7. 
the  curve t h a t  f o r  x - < 0.6, the  equation simplifies fur ther  t o  

It may be seen f r o m  

II  1 (uC 

X Lc, 'a 

C. Application of theory t o  the generation of hm emissions i n  the 

magnetosphere. I n  order t o  apply the above concepts we require a knowledge 

of the plasma density and magnetic f i e l d  strength i n  the magnetosphere as a 

function of posit ion i n  space. 

f e w  precise measurements have been made. 

calculations based on the following models: 

Both of these quant i t ies  a re  time varying and 

For the plasma density we present 

(1) A model of a "normal" magnetosphere based on whistler data obtained 

f r o m  Liemohn and Scarf (1964). 
(2) A model of a magnetosphere characterized by a "knee" (Carpenter, 

1963). I n  our case we assume t h a t  beyond the knee the plasma: density has 

been reduced from i t s  normal value by a factor  of 9. 
For the magnetic f i e l d  strength, we a l s o  present calculations based on 

two  models as follows: 

(1) As a first approximation to the solar  wind cavity on the daylight 

side of the earth,  we consider a dipole f i e l d  confined t o  the  i n t e r i o r  of a 
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Fig. 2 Sample curves f o r  determination of anomalously Ibppler 
sh i f ted  cyclotron frequency 
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sphere (Wentmrth and Tepley, 1962; Figure 3) .  

(2)  As a second approximation, we include the e f f ec t s  of a reduction 

o r  "loading" of the magnetic f i e l d  i n  cer ta in  regions due t o  the presence of 
additional protons of solar  wind energy such as those which are thought t o  

const i tute  "ring currents" (loading of the magnetosphere has been discussed 

i n  Par t  3 of th i s  report)  

W e  consider the so lar  wind cavity only on the daylight side of the  ear th  

because of the  re la t ive  ease of calculation of magnetic f i e l d  strength, and 

a l so  because hm emissions are thought t o  be generated mostly on the  daylight 

side, even though they are  observed most frequently a t  night at  middle and 

low lat i tudes(  Wentworth, @ + a , b ) .  

density and magnetic f i e l d  strength we are able t o  calculate proton cyclotron 

frequencies (Figure 4) and Alfven ve loc i t ies  under various conditions 

(Figure 5 ) -  
l ine ,  we calculate the bounce period o f  the Alfven- wave packet as a function of 

l a t i t ude  (Figure 6). 
present model since the packet bounce time i s  actual ly  determined by the 

hydromagnetic-wave group veloci ty  rather than the Alf'ven velocity. 

ve loc i t i e s  almost coincide when the wave frequency i s  much l e s s  than the 

proton cyclotron frequency, a condition which i s  f u l f i l l e d  over a large par t  

of the packet trajectory.  However, a significant deviation can occur i n  the 

v i c in i ty  of the equatorial  plane i f  the wave frequency approaches the loca l  

proton cyclotron frequency, a condition which can occur when the frequency 

sh i f t  due t o  the anomalous lbppler effect  i s  small. A more exact calculation 

of wave packet bounce time similar t o  that made by Jacobs and Watanabe (1964) 
i s  contemplated a t  a later date. It i s  fe l t ,  however, tha t  the approximate 

calculation presented here i s  adequate t o  indicate the "reasonableness" of 

the present model. 

From the various models f o r  plasma 

By integration of the Alfven velocity along a magnetic f i e l d  

This calculation i s  not s t r i c t l y  applicable t o  the 

The t w o  

The proton stream bounce t i m e  i s  specified by the  requirement that it 

coincide with the wave packet bounce time calculated i n  the manner ju s t  

described. 

ized by a re la t ive ly  small pitch angle, i n  which case the stream bounce t i m e  

i s  almost independent of pi tch angle. 

W e  r e s t r i c t  our discussion t o  protons moving i n  o r b i t s  character- 

Since the bounce time i s  specified, 
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FIELD 8 

Figure 3. 
a t  10 ear th  rad i i .  
the so la r  wind computed by Mead (1964) i s  indicated by the dashed l ines .  

Dipole plus uniform magnetic f i e l d  l i n e s  inside a spherical cavity 
For comparison the deformation of the geomagnetic f i e l d  by 
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Figure 4. 
f i e l d  i n  the magnetosphere. 
by dots along the dipole plus uniform f i e l d  (dashed lines). 

Proton cyclotron frequency contours f o r  the dipole plus  uniform 
Equal increments in ear th  r a d i i  are  indicated 
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Figure 5. Alfven velocity contours f o r  the dipole plus uniform f i e l d  and the 
Liemohn and Scarf (1964) inverse r cubed plasma density i n  the magnetosphere. 
The dipole plus uniform f i e l d  i s  indicated by the dashed l ines .  
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Figure 6. 
normal and "knee" plasma dens i t ies  i n  the magnetosphere. 
magnetic loading of the f i e l d  lines by r ing current  protons i s  included. 

Alfven wave bounce periods f o r  the dipole plus uniform f i e l d  and 
The e f f e c t  of dia- 
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the  component of stream velocity para l le l  t o  the magnetic f i e ld ,  designated 

by v,, , can eas i ly  be calculated. 

L e t  us consider i n  more de'cail the re la t ive  ve loc i t ies  of a hydromagnetic 

wave packet and proton stream characterized by the same bounce time, moving 

i n  the same direction, and crossing the equatorial  plane at  the same time. 

Since the Alfven velocity var ies  substantially as the packet moves along a 

f i e l d  l ine ,  whereas the stream velocity remains almost constant (except near 

the mirror points),  it i s  clear  tha t  the stream moves more slowly than the 

wave packet lower down i n  the magnetosphere, and more rapidly than the wave 

packet higher i n  the  magnetosphere near the equatorial  plane. Thus "faster 

than l igh t"  motion occurs i n  extended regions i n  the v ic in i ty  of the equator- 

ial plane. 

subject t o  the anomalous Doppler s h i f t  and i s  l i k e l y  t o  be most intense 

( Ginzburg, 1962). 

. 

It i s  i n  these regions tha t  the proton cyclotron radiation i s  

The radiated frequency x = a/uc i s  determined from Equation ( 4 )  after 

having calculated the proton velocity vll.  and the Alfven velocity Va i n  the 

manner j u s t  described. 

the calculation of the radiated frequency only a t  the equatorial  plane. 

ever, it i s  d e a r  f r o m  Figures k and 5 t ha t  there are extended regions on e i the r  

side of  the equatorial  plane where both the proton cyclotron frequency and 

Alfven velocity vary extremely slowly over large distances along a given 

magnetic f ie ld- l ine,  so t ha t  almost the same frequency w i l l  be radiated over 

a large region. 

I n  t h i s  preliminary paper we r e s t r i c t  ourselves t o  

How- 

The de ta i l s  of the calculations a re  given i n  later sections. We remark 

here t h a t  the r e su l t s  i n  best  agreement with experimental observation were 

obtained when magnetospheric parameters were used which correspond t o  condi- 

t ions  of a "knee" i n  the plasma density (Carpenter, 1963) and a depression i n  

magnetic f i e l d  strength by a factor  of about 2 (condition of &mum loading) 

a t  the  equatorial  plane where the emissions are  generated. The l a t t e r  condi- 

t ion  seems quite reasonable i n  viewof space probe measurements by Sonett e t  

al (1960) and Smith (1962). 
emissions have been found t o  be generated preferent ia l ly  from 2 t o  8 days 

a f t e r  the sudden commencement of a magnetic storm (Wentworth, l964a,c), a 

In t h i s  regard, it may be s ignif icant  t ha t  hm 
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time period i n  which an enhanced ring-current and a corresponding depression 

i n  the magnetic f i e l d  i s  most l i ke ly  t o  exist (E. J. Smith, private comunica- 

t ion) .  

D. Explanation of rising-frequency f ine  structure. Perhaps the  most 

s t r ik ing  single character is t ic  of most hm-emission bands is the rapidly- 

r i s ing  frequency of the fine-structured elements (Tepley, 1962; Tepley and 

Wentworth, 1962). 

sometimes tend t o  l a g  f a r the r  behind the lower frequencies (Figure 1). 

Jacobs and Watanabe (1964) have explained t h i s  e f fec t  i n  terms of dispersion 

of an Alfven wave packet bouncing between hemispheres and closely guided by 

the geomagnetic f i e ld .  Dispersion i s  introduced i n  the  group velocity when 
the  wave frequency approaches the  l o c a l  proton cyclotron frequency which can 

occur when the packet i s  re la t ive ly  fa r  out i n  the magnetosphere near the 

equatorial  plane. 

. 

I n  successive s t ructural  elements the higher frequencies 

A n  al ternat ive explanation may be offered i n  terms of the present model 

wherein the  rising-frequency fine- structure and dispersion may be a t t r ibu ted  

t o  an  i n i t i a l  velocity spread i n  v,, , the proton veloci ty  component d o n g  the 

magnetic f i e l d  l ine .  

and 5 ) ,  re la t ive ly  lower emission frequencies are generated by the faster 
pa r t i c l e s  i n  the stream, and conversely. Since the  bounce time i s  shorter 

f o r  the  f a s t e r  par t ic les ,  t he  lower frequencies i n  successive fine-structured 

According t o  the anomalous Coppler e f f ec t  (Equations 4 

elements will be more closely spaced - hence, dispersion. 

A numerical example i s  now presented t o  i l l u s t r a t e  t h i s  effect .  Con- 

s ider  the broad-band hm emission presented i n  Figure 1 ( the  same event was 

considered by Jacobs and Watanabe, 1964, t o  i l l u s t r a t e  t h e i r  dispersion cal- 

culation). I n  Table l are given the emission frequencies and f ine  structure 

repe t i t ion  periods fo r  corresponding pa r t s  of the emission band. 

L e t  us assume t h a t  a relat ively large anomalous a p p l e r  s h i f t  occurs so . 

t ha t  Equation ( 5 )  i s  valid,  t h a t  i s  

f 'a 
*C I, 

- = -  
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Table 1. The hydromagnetic-emission event 

of November 2, 1961 observed at  Palo Alto, 

California, and shown i n  Figure 1. 

ESnission Fine- structure 
Part of Frequency Repetition period 

band f ( C P d  T (minutes) 

fl Upper: I 
Center: f2 

3 Jhwer: f I 

- 1.2 

1.5 

1.8 

1.4 

2.0 

34 

. 

LOCKHEED MISSILES & SPACE COMPANY 



It i s  t o  be noted tha t  Va does not actually represent the velocity of the 

hydromagnetic wave packet but i s  only a parameter resul t ing f r o m  considera- 

t i ons  discussed previously ( t h e  wave packet propagates at the  Alfven mode 

group veloci ty  which d i f fe rs  s l igh t ly  from Va). 

f ine-structure repet i t ion period equals the bounce t i m e  of the proton stream 

which i n  turn i s  inversely proportional t o  the proton veloci ty  v,, . W e  con- 

s ider  a proton stream with a velocity spread and associate the 3 selected 

emission frequencies with the cbrresponding values of proton velocity and 

bounce period. Thus 

We now specify tha t  the  

. 

T3 fl: f2: f = T1: T2: 3 

Taking T2 = 1.7 minutes as the reference bounce t i m e  and subst i tut ing the 

tabulated values of flJ f 2 J  9 we calculate 3 

T~ = 1.36 minutes 

T = 2.04 minutes 3 

Comparing the calculated and measured values of bounce t i m e  w e  f ind  a per- 

centage deviation from the mean of 3$ and 2'$ respectively. 

It i s  in te res t ing  to note tha t  the proton veloci ty  dispersion mechanism 

considered above and the wave velocity dispersion mechanism considered by 

Jacobs and Watanabe (1964) may occur simultaneously when the frequency s h i f t  

produced by the anomalous Doppler effect  i s  re la t ive ly  small. The combina- 

t i o n  of the two e f f ec t s  r e su l t s  i n  a tendency toward phase s t a b i l i t y  fo r  

pa r t i c l e s  and waves of different  velocit ies.  For example, the slower pa r t i -  

c les  i n  the stream radiate the relat ively higher frequencies closer t o  the 

l o c a l  proton cyclotron frequency. 

slowly i n  the region near the equatorial plane, the bounce t i m e  of the higher 

frequency portion of the wave packet will be re la t ive ly  long corresponding t o  

the re la t ive ly  longer bounce t i m e  of the slower component of the stream. 

Conversely, the f a s t e r  pa r t i c l e s  i n  the  stream radiate re la t ive ly  lower fre- 

quencies fa r ther  f r o m  the loca l  cyclotron frequency. 

propagate more rapidly at a group velocity which approaches the Alfven 

veloci ty  as the Doppler s h i f t  increases. 

Since these frequencies propagate more 

The lower frequencies 

Thus, the lower frequencies of the 
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wave packet and the f a s t e r  protons which generate these frequencies both tend' 

toward re la t ive ly  short bounce times. 

E. Latitude dependence of hydromagnetic-emission frequency. The ea r l i -  

e r  proton bunch niodel of Jacobs and Watanabe (1963) associates the hm-emission 

frequency with a hydromagnetic resonance effect  i n  the lower exosphere. 

model predicts  an increase of emission frequency with increasing lati5ude. 

Experimentally, the opposite i s  observed (Tepley, 1964; Tepley e t  al, 1964; 
Wentworth, 1964a,b). 

The 

The present model i s  i n  agreement with observation. 

The observed emission frequency i s  a function of both the proton cyclo- 

t ron frequency i n  the region where the signal i s  generated (presumably near 

the equatorial  plane) and the r a t i o  of stream-to-Alfven velocity which deter- 

mines the extent t o  which the  proton cyclotron frequency i s  lowered by the 

anomalous Coppler sh i f t .  The l a t t e r  quantity i s  capable of wide var ia t ion 

and may be responsible f o r  the bandwidth of the emission and the rising- 

frequency f ine  structure as considered previously. The proton cyclotron 

frequency, however, i s  dependent only on the spa t i a l  coordinates of the  

magnetic f i e l d  and the extent t o  which the f i e l d  i s  "loaded". 

the  proton cyclotron frequency near the equatorial  plane w i l l  decrease with 

increasing distance from the earth. Thus emissions generated a t  greater  

distances f r o m  the ear th  w i l l  be characterized by lower frequencies and will 

be guided by the magnetic f i e l d  t o  the ear th  a t  higher la t i tudes.  

model predicts  an inverse frequency-latitude dependence i n  agreement with 

observation. 

I n  general 

Thus the  

F. Guidance of the hydromagnetic-wave packet. A s  demonstrated by 

Booker and Eyce (1963) and Jacobs and Watanabe (1964), the  group velocity 

vector f o r  the Alfven wave tends t o  propagate i n  the direct ion of the geo- 

magnetic f ie ld .  The actual  extent of the guidance, however, i s  a function 

of the r a t i o  of wave frequency t o  local  proton cyclotron frequency, and 

var ies  with posit ion as the packet moves along the f i e l d  l ine.  A quantita- 

t i v e  investigation of the degree of guidance which occurs i s  l i k e l y  t o  be 

quite d i f f i cu l t .  

as does the 2nd model of Jacobs and Watanabe (1964) because energy i s  being 

The present model does not require extremely good guidance 
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added t o  the wave packet each time it crosses the equatorial  plane. 

several  mechanisms f o r  guidance a re  inherent i n  the model. 

However, 

These mechanisms 

may reinforce the  natural tendency f o r  Alfven-wave guidance along the geo- 

magnetic f ie ld .  The guidance mechanisms are as follows: 

(1) A natural duct i s  provided by the "loaded" magnetic f i e l d  discussed . 
i n  Par t  3 of t h i s  report. It should be pointed out, however, t h a t  strong 

thermal and cyclotron (col l is ionless)  hydromagnetic wave absorption may a lso  

occur i n  t h i s  duct since f i e l d  loading i s  presumably produced by re la t ive ly  

energetic pa r t i c l e s  which may move a t  ve loc i t ies  comparable t o  the velocity 

of the hydromagnetic Alfven wave packet. 

re la t ive  importance of guidance and absorption i n  the loaded magnetic f i e l d  

ducts. 

W e  have not yet  investigated the 

(2) A hydromagnetic "whispering gallery" i s  formed when an ion density 

kneel' ex i s t s  i n  the magnetosphere. Thus emissions generated at l a t i t udes  I1 

below the knee w i l l  be reflected internal ly  and thus guidedalong the f i e l d  

l i n e  which defines the posit ion of  the knee. 

contribute t o  guidance of the Alfven wave and will a lso  produce guidance of  

the magneto-sonic wave also radiated by proton streams but which w e  do not 

consider fur ther  i n  t h i s  paper. 

This mechanism may signif icant ly  

111. ENERGY CONSIDERATIONS 

A. Coherency of radiation. The concept of anomalously Doppler shif ted 

cyclotron radiation from a single par t ic le  sp i ra l l ing  i n  a magneto-plasma i s  

re la t ive ly  easy t o  understand. 

stream, however, i s  far more d i f f i cu l t  t o  visual ize  since it depends on a 

collective interact ion between par t ic les  i n  the stream and plasma. It i s  

reasonable t h a t  the collective interaction should r e su l t  i n  some degree of 

coherency i n  the motion of the  stream pa r t i c l e s  and thus i n  coherent cyclo- 

t ron  radiation. 

problems generally lead t o  formulas fo r  the growth ra te  of the  cyclotron 

The concept of radiat ion from a pa r t i c l e  

The mathematically more rigorous treatments of re la ted 

ins tab i l i ty"  as energy i s  transferred from the  stream t o  the plasma I1 

( Stepanov and Kltsenku, 1961). 
found to be quite rapid, a result which perhaps implies coherency of radiation. 

Under cer ta in  conditions the growth r a t e  i s  
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I n  t h i s  section we assume coherency and present ap order of magnitude 

calculat ion t o  demonstrate t h a t  cyclotron radiat ion from a reasonable number 

of protons i s  adequate t o  produce the observed hm emission magnetic f i e l d  

strength at the ear th ' s  surface. The calculat ion i s  based on the  assumption 

t h a t  all of the radiat ing p a r t i c l e s  are collected in to  a single coherent 

c luster .  It should be made clear  tha t  t h i s  assumption i s  made only t o  

simplify the  calculation, and i s  not m e a n t  t o  imply t h a t  such coherent 

c lus t e r s  exist i n  the  magnetosphere. 

i n  order  of magnitude the  t o t a l  radiated energy i s  the  same as t h a t  which 

would be radiated i n  an isotropic  plasma where the  magnitude of re f rac t ive  

index i s  the  same as f o r  t h e  magneto-active plasma, N = C&. 

sp i ra l ing  i n  an i so t ropic  plasma, the t o t a l  energy radiated i s  given by 

. 

It i s  also assumed f o r  simplicity t h a t  

B. Energy radiated by a single proton. For a single proton 

- - -  ec w vL2 Nx2 
wP - 3 ,3 c 

where e i s  the  proton charge, c i s  t h e  veloci ty  of l i g h t ,  N i s  the re f rac t ive  

index of t he  plasma, 03 i s  the  proton cyclotron frequency, and vL = RuC i s  

the  component of proton veloci ty  perpendicular t o  i t s  direct ion of motion 

( R  i s  the  proton gyro-radius). 

veloci ty  component v, ,  

p referen t ia l  frequency dependence and i s  l i k e l y  t o  be much lower i n  amplitude 

than cyclotron radiat ion (Ginzburg, 1962). 

C 

W e  neglect the radiat ion associated with the  

since t h i s  i s  Cerenkov Radiation which exhibi ts  no 

W e  may a lso  write 

2E sin2a 2 
VL = - M ( 7 )  

where E i s  the  proton k ine t ic  energy, M i s  the  proton mass and a i s  the  p i tch  

angle 

W e  take Q = 7' (corresponding t o  a mirror point f a i r l y  low i n  the  exo- 

sphere). 

solution of Figure 7 which predic t s  a 1.5 cps hm emission a t  a l a t i t ude  of 

61' radiated i n  a "normal" plasma and a "fu l ly  loaded" magnetosphere. 

For other  numerical quant i t ies  we take values obtained from the 
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Figure 7 .  Self-consistent solutions f o r  the proton cyclotron exci ta t ion 
model f o r  the production of hydromagnetic emissions. 
solutions must lie along the continuous curve f o r  x(Va/v ). 

The self-consistent 
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The numerical values are: 

E = 9 kev 

N = 1100 

o = 28 radians/second 
C 

x = 0.34 

Subst i tut ing in to  Equation (6) we obtain f o r  the energy radiated f o r  a single 

proton 

. 

wP 3( ergs/sec 

C. Energy received a t  t he  ear th ' s  surface. L e t  us take A B = 50 m i l l i -  
-7 gammas = 5(10 

t he  s ignal  i s  predominantly a magnetic disturbance, the  corresponding energy 

) gauss which represents an extremely la rge  hm emission. Since 

density i s  (A B) 2 /85r = 10 - 14 ergs/cm 3 . 

ionosphere at  the  Alfven veloci ty  V = 2(10 7 ) cm/sec, then the  power density 

Assuming t h a t  t he  energy density 
received at the ea r th ' s  surface i s  the same as t h a t  which emerges from the  

a t  the  ear th ' s  surface i s  2(10-7) erg/cm sec. a 2  

D. Dimensions of t he  radiating proton stream. To the  writers knowledge 

the  anomalously Coppler shif ted radiation pat tern from a proton sp i r a l ing  i n  
a magneto-plasma has not ye t  been calculated. I n  order t o  calculate a lower 

l i m i t  t o  t he  number of protons required, we assume t h a t  all the radiat ion i s  

per fec t ly  guided i n  a tube of magnetic flux and focused toward the  ear th ' s  

surface. 

r a d i i  ( h  = 61') and ''a'' be i t s  area a t  t he  surface of t he  earth.  

ne t i c  flux i s  conserved i n  the  tube 

ear th ' s  surface t o  the  energy density a t  the  equatorial  plane i n  the  f u l l y  

loaded magnetosphere i s  A/a = 200. 

Let "A" be the area of the tube at  the equatorial  plane a t  4 ear th  

Since mag- 

the  r a t i o  of energy density a t  the  

Assuming t h a t  t he  magnetosphere i s  loaded only by 9 kev protons, t he  
3 proton density i s  found t o  be about 40/cm a t  the equator ia l  plane. 

assume t h a t  10 percent of these protons a re  radiat ing coherently, so t h a t  

L e t  us 

t he  density of coherent pa r t i c l e s  i s  

n = 4 protons/cm 3 
P 

We define the  diameter of t he  stream t o  be the diameter of  

We now make the  extreme assumption t h a t  so t h a t  d = (~A/x)~/~. 
40 

the  flux tube, 

the  length of 
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the  stream i s  equal t o  i t s  diameter, so tha t  the  stream pa r t i c l e s  a re  collect-  

ed in to  a cluster.  

“pdA and the  energy radiated coherently i s  

The number of protons i n  the c lus te r  i s  then given by 

. 
The energy received at the ear th’s  surface i s  2(10-7)a. Equating the energy 

radiated t o  the energy received and solving fo r  the diameter of the cylinder 

we f ind  

. For the radiation t o  be fu l ly  coherent it i s  necessary t h a t  the cluster  

The dimensions be much l e s s  than the wavelength of the radiated signal. 

wavelength i s  given by 

For N = 1100 and f = 1.5 cps, we obtain X = 2(10 7 ) an; thus X/d = 100, so 

t h a t  the hypothetical c lus te r  would radiate coherently as specified. 

I n  the more r e a l i s t i c  s i tuat ion of a radiating stream, the length of 

the stream i s  l i ke ly  t o  be much greater than the  length of the hydromagnetic 

wave. 

than  t h a t  resul t ing from a single proton c lus te r ,  but t h i s  would be at  l e a s t  

p a r t i a l l y  compensated by the great increase i n  the number of radiat ing protons. 

Thus the degree of coherency of radiation would probably be far l e s s  

It i s  also of i n t e re s t  t o  calculate the proton gyro-radius given by 

For a = 7 0 , (uc = 28 and E = 9 kev, we f ind  R = 6(10 5 ) cm. Hence X/R = 30. 

Thus the wavelength i s  much greater than the gyro-radius of any radiating 

proton i n  the stream. 
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IV- PARTICLE-WAVE MOTION I N  THE MAGi"0SPHERE 

I n  order t o  discuss the dynamics of pa r t i c l e  and wave motion i n  the mag- 

netosphere we need t o  es tab l i sh  models o f  the  magnetic f i e l d  and thermal 

plasma. We are then able t o  calculate properties of proton motion i n  the  

magnetosphere as w e l l  as Alfven wave bounce periods along l i n e s  of force. 

Final ly ,  we are able t o  show t h a t  self-consistent solutions f o r  the model of 

hm-emission production exis t .  

. 

A. The magnetic f i e l d  of the earth. The magnetic f i e l d  of ' the ear th  i s  

m m a l l y  taken t o  be tha t  of a pure dipole a t  the  center of the  ear th  with 

magnetic moment M = 8.1 x 10 25 3 gauss-cm . I n  the  case of t he  real  ear th  the 

magnetic f i e l d  does not extend t o  inf in i ty ,  but  i s  cut o f f  by t he  so la r  wind 

which limits it t o  an asymmetrical cavity, a p p r o ~ m a t e l y  hemispherical on the 

sun side, and having an average distance of approximately 10 ear th  radii f r o m  

t he  center of the  ear th  during geomagnetically quiet  t i m e s .  

t h i s  cavity i s  approximately t o  add a uniform v e r t i c a l  magnetic f i e l d  t o  the  

dipole magnetic f i e l d  of the ear th  inside the cavity. 

The e f f e c t  of 

A uniformly magnetized sphere h a s  a pure dipole f i e l d  outside and a 

uniform f i e l d  i n  i t s  in t e r io r .  Therefore, a dipole f i e l d  can be l imited t o  

a spherical  region of space by surrounding it with a spherical  s h e l l  of 

surface currents which exactly cancel the dipole f i e l d  outside the  sphere and 

add a uniform f i e l d  inside. The surface currents produced by the  so l a r  wind 

must therefore have approximately t h i s  e f f ec t  i n  the  case of t h e  real earth, 

a t  least  on the  sun side. 

If a uniform f i e l d  B i s  added t o  the dipole magnetic f i e ld ,  the  Br and 
0 

B components become h 

= ( -  Zj + B,) s i n  x 
r Br 

M BX = ( - + Bo) cos X 
T. 3 
L 

and the  equation of a l i n e  of force becomes - 
2 r ( 1-B0re3/2", 

cos h = - 
r e (I-B, r 3 / 2 ~ )  

42 

. ,  

LOCKHEED MISSILES & SPACE COMPANY 



I -  

In  our case, we s e t  Bo = = 62.7 gammas (1 gamma = gauss). 

I n  Figure 3,  the resul tant  f i e l d  l i n e s  are  compared with a model calcu- 

l a t i o n  of the  deformation of the  geomagnetic f i e l d  by the so la r  wind (Mead, 

1963). It can be seen tha t  qual i ta t ively the behavior of the  f i e ld  l i n e s  f o r  

the two models i s  similar, although quantitatively the  Mead f i e l d  l i n e s  l i e  

closer t o  the cavity boundary. However, given the-uncertaint ies  i n  the 

i n i t i a l  conditions assumed i n  any model calculation, it i s  fe l t  t ha t  a more 

detailed calculation than t h a t  based on the pure dipole plus uniform f i e l d  

i s  not j u s t i f i ed  a t  present. 

been employed i n  the magnetosphere, the normdL one f a l l i n g  off  as r-3 (Liemohn 

and Scarf, 1964), 

. 

B. Thermal plasma model i n  the  magnetosphere. Two plasma models have 

*e 
4 3 3  1-41 x 10 (%/r) /cm 

and the "knee" model of Carpenter (1963) having the same re3 dependence but 

lower i n  density by a fac tor  of 9. 
C. Charged pa r t i c l e  motion i n  the magnetosphere. The charac te r i s t ics  

of charged pa r t i c l e  motion i n  a dipole plus uniform magnetic f i e l d  i n  the  

magnetosphere are discussed by Wentworth and Tepley (1962). 

the t o t a l  sp i r a l  a rc  length of a charged pa r t i c l e  mirroring ju s t  above the 

surface of the earth i s  required i n  order t o  r e l a t e  the bounce period of 

trapped protons t o  t h e i r  ve loc i t ies  and energies. 

tabulated f o r  a number of different  f i e l d  l i n e s  i n  Table 2. 

In par t icular ,  

These quant i t ies  a re  

D. Alfven wave bounce periods. The Alfven wave veloci ty  is given by 

= B / m  'a e 

The above models of magnetic f i e l d  and ion  plasma density enable us t o  compute 

Alfven wave ve loc i t ies  i n  the  magnetosphere. 

veloci ty  a re  thus plot ted i n  Figure 5 assuming the normal plasma density i n  

Equation (12) .  

t r ave l  time along a l i n e  of force and obtain the Alfven wave bounce times 

plot ted i n  Figure 6 (lower continuous curve running f r o m  60' t o  85'). It 
should be noted here t h a t  the hydromagnetic wave packet propagates a t  the 

Contours of equal Alfven 

It i s  then a simple matter t o  integrate  the Alfven wave 
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Table 2. 

Magnetosphere. The dipole plus uniform f i e l d  

i s  assumed with a cavity boundary at  10 . 
I n  addition the  assumption i s  made t h a t  the  

protons r e f l e c t  near the surface of the  earth 

(see Wentmrth and Tepley, 1962, f o r  a general 

discussion of t h i s  calculation). 

Parameters of proton motion i n  the  

93 

Geomagnetic Latitude 

, 

45 60 70 80 85 

Proton Velocity fo r  4 min 

Bounce period of :  2 min 

Total  Sp i r a l  Arc 
Length (4SJ I 

0.24 0.52 0.94 1.67 2.08 

0.47 1.05 1.89 3.34 4.16 

5.7 12.6 22.6 40.1 49.9 I 

Proton energy f o r  4 min 

Bounce period of: 2 min 

0.29 1.42 4.65 14.5 22.4 

1.16 5.70 18.6 58.0 89.7 

Proton d r i f t  r z t e  4 min 

f o r  bounce period: 2 min 

0.22 1.65 6.28 13.7 17.2 

0.87 6.63 25.1 54.7 68.9 

44 

degrees 

x 109 cm 

8cm x 10 - se c 

kev 

. 
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. 

Alfven wave group velocity ra ther  than the Alfven velocity. The two  veloci- 

t i e s  may d i f f e r  s ignif icant ly  when the wave packet i s  i n  the v i c in i ty  of the 

equator ia l  plane. 

mate the  wave packet bounce times. 

a t  a l a t e r  date. 

Hence the calculated Alfven wave bounce times only approxi- 

A more exact calculation i s  contemplated 

L e t  us  now consider the e f f ec t  of diamagnetic loading of the magnetic . 

Suppose t h a t  a hot plasma of high energy protons i s  trapped i n  

. 
f i e l d  l ines .  

a f l u x  tube along a l i n e  of force. 

protons approaches the energy density of the magnetic f i e ld ,  the resul tant  

magnetic f i e l d  i n  the f lux  tube i s  s ignif icant ly  lowered. In  fac t ,  it has 

been shown i n  Part  3 of t h i s  report  t h a t  maximum loading of a f i e l d  l i n e  

r e su l t s  i n  the  magnetic f i e l d  strength being reduced t o  1/2 of i t s  or ig ina l  

value, and the  energy density of trapped protons which produces t h i s  e f f ec t  

i s  equal t o  1/4 of the  or ig ina l  magnetic f i e l d  energy density. 

energy density of trapped protons i s  equal t o  the energy density of the per- 

turbed f i e ld ,  and no additional par t ic les  can be contained by the perturbed 

f ie ld .  

If  the  energy density of the trapped 

Thus the 

We now wish t o  calculate the Alfven wave bounce periods along loaded 

f i e l d  l i n e s  where the  amount of loading i s  chosen t o  produce a predetermined 

equatorial  proton cyclotron frequency (Note i n  Figure 4 tha t  f o r  l i n e s  of 

force above 80' the  m i n i m u m  proton cyclotron frequency occurs off  the equa- 

t o r i a l  plane; fo r  those f i e l d  l i n e s  the m i n i m u m  proton cyclotron frequency 

instead of the equatorial  value i s  implied i n  the  following discussion). 

an example l e t  us assume t h a t  we desire an equatorial  proton cyclotron fre- 

quency of 2 cps. W e  note f r o m  Figure 4 t h a t  the unloaded 7 5 O  f i e l d  l i n e  i s  

characterized by t h i s  value, while the unloaded 67' f i e l d  l i n e  i s  character- 

ized by a proton cyclotron frequency of 4 cps. 

67' f i e l d  l i ne ,  we obtain the same equatorial proton cyclotron frequency 

which characterizes the unloaded 75' f i e l d  l ine .  

bounce period curve corresponding t o  an equatorial  proton cyclotron frequency 

of 2 cps, runs between 67' f o r  a fu l ly  loaded f i e l d  and 75' f o r  an unloaded 

f ie ld .  

bounce t i m e  i s  6.8 minutes along the unloaded 75' f i e l d  l ine ,  and 3.6 minutes 

As 

Hence by f u l l y  loading the 

Therefore, the Alfven 

From Figure 6 we see t h a t  with a normal thermal plasma, the Alfven 
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along the ful ly , loaded 67' f i e l d  line. 

t he  unloaded 67' f i e l d  l i n e  i s  2.7 minutes. 
Also the Alfven bounce t i m e  along 

I n  the case of the "knee" plasma density the above Alfven bounce times 

are reduced by a fac tor  of 3, becoming 2.3 minutes, 1.2 minutes, and 0.9 
minutes respectively. I n  performing these calculations it has been assumed 

t h a t  t he  thermal plasma density along a loaded f i e l d  l i n e  i s  unchanged from 

i t s  unloaded value, and t h a t  the energy density of the hot trapped energetic 

protons i s  constant along the f i e l d  l ine .  

. 

E. Self-consistent model calculations. The present model f o r  t he  
. production of hm emisFions has a number of parameters which must be self- 

consistent. 

s t ructure  repe t i t ion  period of 4 minutes, and by a center frequency of 0.5 
cps. 

plasma characterized by a density "knee". 

bounce period can occur between la t i tudes  of 77' f o r  a f u l l y  loaded f i e l d  

l i n e  and 81' for  an unloaded f i e l d  l ine.  

specif ies  the energies of the protons bouncing i n  phase with the hydromag- 

net ic  wave packet as being between U.2 kev a t  77' and 16.2 kev at  81'. 
Finally, the frequency radiated by these protons as they pass through the 

equatorial  plane with greater than Alfven wave ve loc i t ies  i s  given approxi- 

mately by Equation ( 5 )  f o r  the anomalous Ibppler effect .  

A s  an example, consider an hm emission characterized by a f ine  

L e t  us specify tha t  the hydromagnetic wave packet i s  propagating i n  a 

From Figure 6, the 4 minute Alf'ven 

The 4 minute bounce t i m e  a l s o  

This re la t ion  must hold fo r  our example. Therefore, the self-consistent 

solution involving x = w/cu 

0.5 cps, the loaded equatorial  proton cyclotron frequency between 77' and 81, 
and the r a t i o  vlI /V a 
above curve determined by Equation ( 3 )  
a function of Va/v,, . 
with the curve of Equation ( 5 )  exis ts  at  approximately x = 0.57. 

determined by the observed emission frequency o f  
C 

0 

i n  the v ic in i ty  of the equatorial  plane must l i e  on the 

I n  Figure 7, x has been plot ted as 

For the case of the "knee" density an intersect ion 

It i s  in- 
te res t ing  t o  note tha t  no intersection occurs fo r  the above conditions f o r  

the normal plasma density. Therefore, since hm emissions having bounce 

periods of 4 minutes and frequencies of 0.5 cps a re  frequently observed at 

high la t i tudes ,  e i the r  "knee"-type plasma densi t ies  must occasionally exist 

i n  the magnetosphere, o r  the  present model does not apply. 
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I n  a second case considered, corresponding t o  the hm emission shown i n  
* Figure 1 and discussed i n  an e a r l i e r  section, the emission band center fre- 

quency i s  1.5 cps and the corresponding bounce period i s  1.7 minutes. 

sections f o r  a self-consistent solution occur fo r  normal plasma density a t  

about 61' and f o r  "knee" density a t  about 72'. 

Inter-  
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